tion.

I can find all the solutions (real & compex) of a polynomial equation.

Zeros, Factors, Roots and intercepts Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + + a_1 x + a_0$ be a polynomial function. Then the following statements are equivalent.

- c is a zero of P(x).
- c is a root or solution of P(x)=0.
- x c is a factor of $a_n x^n + + a_1 x + a_0$
- If c is a real number, then (c,0) is an xintercept of the graph of P(x)
- \rightarrow Given P(x) = $x^2 3x 10$:
 - 5 and -2 are <u>zeros</u> of P(x)
 - 5 and -2 are <u>roots</u> or <u>solutions</u> of P(x)
 - x 5 and x + 2 are **factors** of P(x)
 - (5,0) and (-2,0) are x-intercepts of the graph of P(x)
 - p(5)=0 and p(-2)=0

I can find all the solutions (real & compex) of a polynomial equation.

Fundament	al
Theorem	of
Algeb	ra

- Every polynomial equation with degree greater than 0 has at least one root in the set of complex numbers.
 - Every polynomial equation has a solution

I can find all the solutions (real & compex) of a polynomial equation.

Find all the zeros of each function given solution(s).

State number and type of roots.

from graph 1. $f(x)= x^3 + 7x^2 + 4x + 28$ **Use technology to find the first zero.

1 rational 2 imaginary

I can find all the solutions (real & compex) of a polynomial equation.

Find all the zeros of each function given solution(s).

State number and type of roots.

2.
$$f(x) = x^4 - 6x^3 + 9x^2 + 6x - 10$$
 given $x = 1$, $x = -1$

1. -6 -10

1. -5 $+10$

1. -5 $+10$

1. -6 -10

1. -6 -10

1. -6 -10

2. -1

3. -6

3. -6

4. -1

3. -6

4. -1

4. -6

5. -6

6. -1

7. -6

8. -6

8. -6

8. -6

9. -6

9. -6

1. -6

1. -6

1. -6

1. -6

1. -6

1. -6

1. -6

1. -6

2. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

3. -6

4. -6

3. -6

4. -6

3. -6

4. -6

4. -6

4. -6

5. -6

6. -10

7. -6

8. -6

9. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

1. -6

9. -6

9. -6

1. -6

9. -6

9. -6

1. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

9. -6

I can find all the solutions (real & compex) of a polynomial equation.

Complete the 2 Your Turn Problems.

 $\therefore \frac{\text{CHANGE YOUR TURN PROBLEM}}{f(x) = 5x^3 - 33x^2 + 16x + 12 \text{ given } x = 6}$