Remember: A trapezoid has only ONE pair of sides that are parallel. These are the <u>bases</u>. The <u>height</u> is the perpendicular distance between the bases.

Area of a trapezoid is equal to one half the product of the height and the sum of its two bases.

**
$$A = \frac{1}{2}h(b_1+b_2)$$
 **
$$A = \frac{h(b_1+b_2)}{2}$$

Example 1 Find the area of the trapezoid.

$$A = \frac{1(3+2.5)}{2} = \frac{5.5}{2} = 2.75 cn^{2}$$

Example 2 Find the area of the trapezoid.

$$A = \frac{5(15+8)}{2} = \boxed{57.5 \text{ in}^2}$$

RECALL: A RHOMBUS is a parallelogram with ALL 4 sides congruent. A KITE is a quadrilateral with exactly two pairs of consecutive cogruent sides.

Area of a Rhombus

If a rhombus has an area of A square units, and diagonals of d_1 and d_2 units, then

$$A = \frac{1}{2} d_1 d_2$$
 $A = \frac{d_1 d_2}{2}$

Example: $A = \frac{\cdot}{2} (AC)(BD)$

Area of a Kite

If a kite has an area of A square units, and diagonals of d₁ and d₂ units, then

$$A = \frac{1}{2} d_1 d_2$$

Example: $A = \frac{1}{2}(IK)(HJ)$

If a diagonal is missing, you may need to use pythagorean theorem to find half of it. Then double to find the diagonal.

Example 3:

Find the area of the rhombus.

$$A = \frac{(48)(36)}{2} = \frac{864}{}$$

Example 4 Find the area of each rhombus or kite.

Example 5:

Trapezoid PQRS has an area of 250 square inches. Find the height of PQRS.

Example 6:

Rhombus KEIT has an area of 64 square inches.

$$A = \frac{1}{2} d_1 d_2 \rightarrow A = \frac{d_1 d_2}{2}$$

$$2 \cdot 64 = \frac{8 \times 1}{2}$$

$$\frac{128 = 8 \times 1}{8}$$